
Suspend-less Debugging

for Interactive and/or Realtime Programs

Apr. 25, 2019

Haruto Tanno

Hideya Iwasaki

The University of Electro-Communications (Japan)

2

Outline

Debugging interactive and/or realtime programs

– GUI programs, action-game programs, network-based

programs, sensor information processing programs

– Traditional breakpoint-based debugging is NOT suitable.

Suspend-less debugging

– Features

– SLDSharp (Suspend-less debugger for C#)

– Case study (Demo)

Implementation

Related work

Conclusion

3

Interactive and/or realtime programs

Typical execution flow of interactive and/or realtime programs

Input
input events from user, from sensor

devices, via the network, etc.

Output
output results onto a display, into

memory as internal data, or to

somewhere else via a network

Initialization

Repeated execution

Finalization

• The timings and order of input event occurrences such as user

operations are quite important.

• The behaviors of a program intricately change with the input events

and the program’s internal states.

4

The main target of debugging is “Repeated execution” part

that occupies most of the execution time.

Traditional breakpoint-based debugging

– We have to suspend execution of target program to observe

its internal state.

It is NOT suitable for debugging interactive and/or realtime

programs.

• Program will not behave as expected if its execution is

suspended at a breakpoint.

• Suspending a program to observe its internal states will

degrade the efficiency of debugging.

Debugging interactive and/or realtime programs

5

Example: action game program

public void PlayerAttack(PlayerInput input, Player player, List<Enemy> enemyList){

int damagePoint = player.OffensivePower;

if (input.AttackButton){

// player attack strength increases five times

if (input.DashButton) damagePoint *= 5;

foreach (var enemy in enemyList){

if (Vector3.Distance(player.Position, enemy.Position) <= 5.0) {// enemy is nearby

if (!enemy.IsInvincible){ // enemy is not invincible

enemy.HealthPoint -= damagePoint;

if (enemy.HealthPoint <= 0) enemy.Dead(); // enemy is defeated

}

}

enemy.EndPlayerCollision();

}

}

}

Game logic for the player character's attacks to enemies.

 Its behaviors change with the input events determined.  Interactive

 It is executed at a certain interval.  Realtime

6

 Its behaviors change with the input events determined.  Interactive

 It is executed at a certain interval.  Realtime

public void PlayerAttack(PlayerInput input, Player player, List<Enemy> enemyList){

int damagePoint = player.OffensivePower;

if (input.AttackButton){

// player attack strength increases five times

if (input.DashButton) damagePoint *= 5;

foreach (var enemy in enemyList){

if (Vector3.Distance(player.Position, enemy.Position) <= 5.0) {// enemy is nearby

if (!enemy.IsInvincible){ // enemy is not invincible

enemy.HealthPoint -= damagePoint;

if (enemy.HealthPoint <= 0) enemy.Dead(); // enemy is defeated

}

}

enemy.EndPlayerCollision();

}

}

}

Example: action game program

Game logic for the player character's attacks to enemies.

Pushing DushButton makes attack power five times stronger.

 The programmer expects that pushing AttackButton two or three

times defeats an enemy, but the enemy is not defeated due to a bug.

7

public void PlayerAttack(PlayerInput input, Player player, List<Enemy> enemyList){

int damagePoint = player.OffensivePower;

if (input.AttackButton){

// player attack strength increases five times

if (input.DashButton) damagePoint *= 5;

foreach (var enemy in enemyList){

if (Vector3.Distance(player.Position, enemy.Position) <= 5.0) {// enemy is nearby

if (!enemy.IsInvincible){ // enemy is not invincible

enemy.HealthPoint -= damagePoint;

if (enemy.HealthPoint <= 0) enemy.Dead(); // enemy is defeated

}

}

enemy.EndPlayerCollision();

}

}

}

The value of input.AttackButton is false in

spite of the player pushing it.

EnemyList does not include the

enemy character that is attacked.

The power of the player character’s attack

remains normal because the value of

input.DashButton is not true.

The result of Vector3.Distance

is incorrect.

The value of enemy.isInvisible is

unexpectedly true.

There are several possibilities for the cause of this bug.

Example: action game program

8

public void PlayerAttack(PlayerInput input, Player player, List<Enemy> enemyList){

int damagePoint = player.OffensivePower;

if (input.AttackButton){

// player attack strength increases five times

if (input.DashButton) damagePoint *= 5;

foreach (var enemy in enemyList){

if (Vector3.Distance(player.Position, enemy.Position) <= 5.0) {// enemy is nearby

if (!enemy.IsInvincible){ // enemy is not invincible

enemy.HealthPoint -= damagePoint;

if (enemy.HealthPoint <= 0) enemy.Dead(); // enemy is defeated

}
・・・

Problems of breakpoint-based debugging

 It suspends execution of target program to observe its internal state.

– Program will not behave as expected.

– It will degrade the efficiency of debugging.

These problems are common to many interactive and/or realtime programs.

Program suspends each time the programmer check the value of enemy.HealthPoint.

Program suspends each time the programmer pushes the button.

This makes it difficult to continue to give next input.

9

Our proposal: suspend-less debugging

Approach

– It visualizes both the information on the execution path and the

values of the expressions of interest in realtime.

– It enables the programmer to interactively explore possible

causes of a bug WITHOUT having to suspend the program.

SLDSharp: Debugger for C#

10

(1) Currently executing place (execution path) and the values of

expressions at a certain interval are presented in realtime.

The programmer can recognize the internal states immediately.

(2) Information on the execution paths is presented on three levels.

– File level, function/method level, statement level

The programmer can narrow down parts to be investigated step by

step.

(3) Sections and conditions for visualization can be specified.

– E.g. focus on a specific element in for/foreach, a specific thread

The programmer can focus on the information of interest without any

noisy information.

(4) Debug mode and non-debug mode can be switched dynamically.

The programmer can debug the program without extra overhead.

Features of suspend-less debugging

11

SLDSharp: debugger for C#

Source file list and method list view

Source code view

Highlights of

executed files

Highlights of

executed methods

Latest value of specified expression

Debug and non-debug mode can be switched

for each method

Highlights of executed statements

- Light green : the execution has visited

once within a certain amount of time

- Dark green : the execution has visited

more than once

- Expressions to be monitored

- Sections and conditions to be

monitored

12

Features

Case study

SLDSharp: demo

Unity Tanks! (1.5KL C# program)

・Each of the two players controls a tank and

shoot shells at the opponent tank to destroy.

https://www.youtube.com/watch?v=iI-WG13qx8c

https://www.youtube.com/watch?v=iI-WG13qx8c

13

(1) Currently executing place (execution path) and the values of expressions at a

certain interval are presented in realtime.

The programmer can recognize the internal states immediately.

(2) Information on the execution paths is presented on three levels.

– File level, function/method level, statement level

The programmer can narrow down parts to be investigated step by step.

(3) Sections and conditions for visualization can be specified.

– E.g. focus on a specific element in for/foreach, a specific thread

The programmer can focus on the information of interest without any noisy

information.

(4) Debug mode and normal mode can be switched dynamically.

The programmer can debug the program without extra overhead.

Features of suspend-less debugging

These features do not restrict the domain of debuggee programs

and are applicable to general programming languages.

14

Implementation

Embedding debug code is automatically done by code transformation.

The programmer need not to make any changes to the debuggee code.

Original code
Code embedded

with debug code

Step 1:

Transform

Debugging

library

Step 2:

Build

Binary

code

Step 3:

Execute

and debug

15

Mechanism of code transformation

public void PlayerAttack(PlayerInput input, Player player, List<Enemy> enemyList){

int damagePoint = player.OffensivePower;

if (input.AttackButton){

…

Original code

Code transformation

Code embedded with debug code

public void PlayerAttack(PlayerInput input, Player player, List<Enemy> enemyList){

if (_Logger.IsLogging(0)){ _debug_PlayerAttack(input, player, enemyList);}//debug

else {_original_PlayerAttack(input, player, enemyList);}//non-debug

}

public void _debug_PlayerAttack(PlayerInput input, Player player, List<Enemy> enemyList){

var _logger = _Logger.GetLogger(0, 0);

int damagePoint = _logger.LogFunc(() => player.OffensivePower, 0);

if (_logger.LogFunc(() => input.AttackButton, 1))

…
public T <T>(LogFunc<T> statement, int stateId){

DebugProc(…);

return statement(); ｝

Can be switched dynamically

16

 Debugger controller thread runs as an extra thread in a debuggee process.

 Each thread except the debugger controller thread records logs generated

by the embedded code.

Mechanism of debugging execution

Execution paths,

latest values of

expressions

Monitored expressions，
sections, and conditions

The programmer

Debuggee program

Thread

N

Thread

1
…

Threads of debuggee program

Debugger

controller

thread

- Execution paths，latest values of expressions

- Monitored expressions, sections, and conditions

17

Log based debugging

– It collects logs automatically without suspending the debuggee program and

exploits the obtained logs AFTER its execution.

– Programmer cannot see debug information in realtime.

 Trial and error style debugging is difficult.

– It is impractical to collect all information due to the overhead.

 The programmer may be unable to find desired information in the logs.

Time travel debugging

– It records all inputs to the program and reproduce the program execution.

• E.g. Java[Barr et al, 2014], JavaScript/Node.js[Barr et al, 2016]

– This approach is a log-based one. (Trial and error style debugging is

difficult.)

– There is a technical hurdle for implementing perfectly replaying execution.

• E.g. multithreaded programs do not always replays perfectly.

 The programs to which this method can be applied are restricted.

Related work

18

We propose suspend-less debugging.

– Displays information on execution paths and the values of expressions

in a program in realtime without suspending program execution

We implemented it in SLDSharp, a debugger for C# programs.

We demonstrated its effectiveness through a case study using a

game program.

Future work

– Examine the effectiveness of the suspend-less debugging on more

various subjects

• E.g. network-based programs, and sensor information processing programs

– Implement the proposed debugger for languages other than C#

• E.g. JavaScript

Conclusion

19

Thank you for your attention!

